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This book presents the numerous tools for the econo-
metric analysis of time series. The text is designed with 
emphasis on the practical application of theoretical 
tools. accordingly, material is presented in a way that  
is easy to understand. In many cases intuitive explana-
tion and understanding of the studied phenomena are 
offered. Essential concepts are illustrated by clear-cut 
examples. The attention of readers is drawn to numerous 
applied works where the use of specific techniques is 
best illustrated. Such applications are chiefly connected 
with issues of recent economic transition and European 
integration. The outlined style of presentation makes  
the book also a rich source of references.
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INTRODUCTION

This book, in its third edition, presents the numerous tools for the econometric 
analysis of time series. The text is designed so that it can be used for a semester 
course on time series econometrics, but by no means is the text meant to be 
exhaustive on the topic. The major emphasis of the text is on the practical ap-
plication of theoretical tools. Accordingly, we aim to present material in a way 
that is easy to understand and we abstract from the rigorous style of theorems 
and proofs.1 In many cases we offer an intuitive explanation and understand-
ing of the studied phenomena. Essential concepts are illustrated by clear-cut 
examples. Readers interested in a more formal approach are advised to consult 
the appropriate references cited throughout the text.2

Many sections of the book refer to influential papers where specific tech-
niques originally appeared. Additionally, we draw the attention of readers to 
numerous applied works where the use of specific techniques is best illustrated 
because applications offer a better understanding of the presented techniques. 
Such applications are chiefly connected with issues of recent economic transi-
tion and European integration, and this way we also bring forth the evidence 
that applied econometric research offers with respect to both of these recent 
phenomena. The outlined style of presentation makes the book also a rich 
source of references.

The text is divided into five major sections. The first section, “The Nature of 
Time Series”, gives an introduction to time series analysis. The second section, 
“Difference Equations”, describes briefly the theory of difference equations 
with an emphasis on results that are important for time series econometrics. 
The third section, “Univariate Time Series”, presents the methods commonly 
used in univariate time series analysis, the analysis of time series of one sin-
gle variable. The fourth section, “Multiple Time Series”, deals with time series 
models of multiple interrelated variables. The fifth section “Panel Data and Unit 
Root Tests”, deals with methods known as panel unit root tests that are relevant 
to issues of convergence. Appendices contain an introduction to simulation 
techniques and statistical tables.

Photographs, and illustrations based on them, that appear throughout the 
book are to underline the purpose of the tools described in the book. Photo-
graphs, taken by Monika Kočendová, show details and sections of Fresnel lens-
es used in lighthouses to collimate light into parallel rays so that the light is vis-
ible to large distances and guides ships. Tools described in this book are used to 
process information available in data to deliver results guiding our decisions. 

1 For rigorous treatment of specific issues Greene (2008) is recommended.
2 Patterson (2000) and Enders (2009) can serve as additional references that deal specifically with time 

series analysis.
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When working on the text we received valuable help from many people and 
we would like to thank them all. In particular we are grateful for the research 
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1.

THE NATURE OF TIME SERIES

There are two major types of data sets studied by econometrics: cross-sec-
tional data and time series. Cross-sectional data sets are data collected at one 
given time across multiple entities such as countries, industries, and compa-
nies. A time series is any set of data ordered by time. As our lives pass in time, 
it is natural for a variable to become a time series. Any variable that registers 
periodically forms a time series. For example, a yearly gross domestic product 
(GDP) recorded over several years is a time series. Similarly price level, unem-
ployment, exchange rates of a currency, or profits of a firm can form a time se-
ries, if recorded periodically over certain time span. The combination of cross-
sectional data and time series creates what economists call a panel data set. 
Panel data sets can be studied by tools characteristic for panel data economet-
rics or by tools characteristic for multiple time series analysis.

The fact that time series data are ordered by time implies some of their 
special properties and also some specific approaches to their analysis. For ex-
ample, the time ordering enables the estimation of models built upon one vari-
able only – so-called univariate time series models. In such a case a variable is 
estimated as a function of its past values (lags) and eventually time trends as 
well. As the variable is regressed on its own past values, such specification is 
aptly called an autoregressive process, abbreviated as “AR”. Because of the time 
ordering of data, issues of autocorrelation gain prominent importance in time 
series econometrics.
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1.1 DESCRIPTION OF TIME SERIES

A set of data ordered by time forms a time series, { } =1

T
t t

y . We use the term “time 
series” for three distinct but closely related objects: a series of random vari-
ables, a series of data that are concrete realizations of these variables, and also 
for the stochastic process that generates these data or random variables.

Example 1.1 The stochastic process that generates the time series can be, for ex-
ample, described as a simple autoregressive process with one lag: yt = 0.5yt−1 + εt 
(AR(1) process), where εt are normal iid with mean 0 and variance σ2, which 
is some positive number. With the initial condition y0 = 0, the sequence of ran-
dom variables generated by this process is ε1, 0.5ε1 + ε2, 0.25ε1 + 0.5ε2 + ε3, etc. 
Finally, the concrete realizations of these random variables can be the numbers 
0.13882, 0.034936, −1.69767, etc. When we say that we estimate a time series, 
it means that based on the data (concrete realizations) we estimate the under-
lying process that generated the time series. The specification of the process is 
also called the model.

The properties frequency, time span, mean, variance, and covariance are used to 
give a basic description of time series.
1. Frequency is related to the time elapsed between yt and yt+1. Data can be 

collected with yearly, quarterly, daily, or even greater frequency. In case of 
a greater-than-daily frequency we speak about intra-day data. For example 
stock prices may be recorded in minute or even second intervals. The term 
“frequency” is actually used incorrectly in the context of time series econo-
metrics. When we say daily frequency of the data, we mean in fact that there 
is one data point recorded per day.

2. Time span is the period of time over which the data were collected. If there 
are no gaps in the data, the time span is equivalent to the number of obser-
vations times the frequency. Throughout the text T is reserved to indicate 
the sample size (the number of observations) unless stated otherwise.

3. The mean μt is defined as ( )μ =t tE y . The mean is defined for each element 
of the time series, so that with T observations there are T means defined.

4. The variance is defined as ( ) ( )μ 
 
  

= − 2
t t tvar y E y . Similarly as with the 

mean, the variance is defined for each element of the time series.

5. The covariance is defined as ( ) ( ) ( )μ μ 
 − − − 

, = − −t t s t t t s t scov y y E y y . The co-

variance is defined for each time t and for each time difference s, so that in 
the general case there are T 2 – T covariances defined; however, because of 
symmetry only half of them are different.
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1.2 WHITE NOISE

White noise is a term frequently used in time series econometrics. As the name 
suggests, white noise is a time series that does not contain any information that 
would help in estimation (except its variance and higher moments). Residuals 
from a correctly specified or “true” model that captures fully the data generat-
ing process are white noise. In the text, the white noise error process will be 
usually denoted as εt. For example a series of identically and independently dis-
tributed random variables with 0 mean is white noise.

When we estimate a time series using a correct model as described in sec-
tions 1.6 and 3.1 then the remaining inestimable part of the time series (the er-
rors, or residuals) must be white noise. Procedures used to test if a time series 
is white noise are described in section 3.1.4.

1.3 STATIONARITY

Stationarity is a crucial property of time series. If a time series is stationary, then 
any shock that occurs in time t has a diminishing effect over time and finally 
disappears in time t + s as s � ∞. This feature is called mean reversion. With 
a non-stationary time series this is not the case and the effect of a shock either 
remains present in the same magnitude in all future dates or can be considered 
as a source behind the “explosion” of the series over time. If the former is the 
case, then the time series was generated by the so-called unit root process. Unit 
root processes form a special subset of non-stationary processes. Being on the 
edge between stationary and non-stationary processes, unit root processes play 
a particularly important role in time series analysis. For more details on station-
arity, non-stationarity, and unit root processes see sections 2.4, 2.5, 3.4, and 3.5.

The most frequently used stationarity concept in econometrics is the con-
cept of covariance stationarity. Throughout the text, we will for simplicity usu-
ally use only the term stationarity instead of covariance stationarity. We say 
that a time series { } =1

T
t t

y  is covariance stationary if and only if the following 
formal conditions are satisfied: 

1. μ μ μ−= =t t s  < ∞ for all t, s.

2. ( ) ( ) σ−= = 2
t t svar y var y  < ∞ for all t, s.

3. ( ) γ 
 − − − − 

, = , =t t s t j t j s scov y y cov y y  < ∞ for all t, j, and s.

Translated into plain language the above means that a time series is covariance 
stationary, if its mean and variance are constant and finite over time and if the 
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covariance depends only on the time distance s between the two elements of 
the time series but not on the time t itself.

Note that any white noise time series is obviously stationary. However, 
a stationary time series is not automatically white noise. For white noise we 
need additional conditions that the mean and all covariances are 0; e.g. μ = 0 
and γs = 0 for all s.

Most economic time series are not stationary and specific transformations 
are needed in order to achieve stationarity. Some useful transformations are 
described in the next section.

Figure 1.1: Stationary, non-stationary, and unit root time series: a comparison.

Example 1.2 Figure 1.1 shows examples of stationary, non-stationary, and unit 
root time series. All three series were generated by a simple autoregressive 
process with one lag, an AR(1) process defined as yt = a1  yt−1 + εt, where εt are 
normal iid with zero mean and variance σ 2 = 9. With such an AR(1) process, the 
necessary and sufficient condition for stationarity is |a1| < 1. If |a1| ≥ 1, then the 
time series is non-stationary, with |a1| > 1 it explodes and with |a1| = 1 it con-
tains a unit root. The formal necessary and sufficient conditions for time series 
stationarity will be described in sections 2.4 and 2.5. The three time series in 
the figure were generated by the following processes:

stationary: yt = 0.6yt−1 + εt, a1 = 0.6 < 1,
non-stationary: yt = 1.1yt−1 + εt, a1 = 1.1 > 1,
unit root: yt = yt−1 + εt, a1 = 1.

Stationary
Non-stationary
Unit root
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We can distinguish clear visual differences between the three time series. The 
stationary time series tends to return often to its initial value. The non-station-
ary time series explodes after a while. Finally, the time series containing a unit 
root can resemble a stationary time series, but it does not return to its initial 
value as often. These differences can be more or less pronounced on a visual 
plot. Nevertheless, a visual plot cannot replace the formal stationarity tests de-
scribed in sections 3.4, 3.5, and 5.

1.4 TRANSFORMATIONS OF TIME SERIES

In most cases some transformations of time series of economic data are nec-
essary before we can proceed with estimation. Usually we apply transforma-
tions in order to achieve stationarity. However, sometimes it is natural to apply 
transformations because the transformed variable corresponds to what we are 
actually interested in. A typical example is a macroeconomic variable in levels 
versus the variable’s growth rate. An example of this is prices versus inflation. 
If we are interested in analyzing inflation, then we want to transform prices (in 
levels) into inflation first. Achieving stationarity through the transformation is 
an extra benefit.

Depending on the type of transformation that we must apply in order to 
make a time series stationary, we can make a basic distinction of the time series 
into difference stationary, trend stationary, and broken trend stationary series. 
Difference stationary time series become stationary after differencing, trend 
stationary series after detrending, and broken trend stationary series after de-
trending with a structural change incorporated (more on broken trend station-
ary series will be introduced in section 3.5).

If a series must be differenced n times to become stationary, then it is inte-
grated of the order n, which we denote as I(n). Thus, a series that is stationary 
without any differencing can be also denoted as I(0). The definition assumes 
that n is an integer. Its extension to fractional values of n is covered by the con-
cept of fractional integration; the topic is beyond the scope of the book but 
Hosking (1981) and Mills and Markellos (2008) can serve as useful references.

Prior to differencing and detrending, the most common transformation is 
to take a natural logarithm of the data in order to deal with a sort of non-lin-
earity or to reduce an exponential trend into a linear one. For example, if we 
are interested in growth rates, it is natural to apply logarithmic differencing, 
which means that we first take natural logarithms of the data and then differ-
ence them.

1. Taking a natural logarithm is applied when the data perform exponential 
growth, which is a common case in economics. For example, if a GDP of 
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a country grows each year roughly by 3% when compared to preceding 
year, then the time series of yearly GDP contains an exponential trend. In 
such a case, by taking a natural logarithm we receive data that grow lin-
early.

2. Differencing is the most common approach applied in order to achieve 
stationarity. To difference a time series, we apply the transformation 
Δyt = yt – yt−1, where Δyt is the so-called first difference. To obtain second 
differences denoted as Δ2yt we apply the identical transformation on first 
differences Δ2yt = Δyt – Δyt−1. In this way we can create differences of even 
higher orders. Although any time series becomes stationary after a suf-
ficient order of differencing, differencing of a higher than second order is 
almost never used in econometrics. The reason is that by each differencing 
we lose one observation and, more important, by each differencing we lose 
a part of the information contained in the data. In addition, higher order 
differences have no clear economic interpretation. Second differences are 
already linear growth rates of the linear growth rates obtained by first dif-
ferencing.

3. Detrending is a procedure that removes linear or even higher order trends 
from the data. To detrend a time series, we run a regression of the series 
on a constant, time t, and eventually its higher powers as well. Residuals 
from such a regression represent the detrended time series. The degree of 
the time polynomial included in the regression can be formally tested by 
an F-test prior to detrending. Trending time series are never stationary, be-
cause their mean is not constant. Therefore, detrending also helps to make 
such time series stationary. More details about trends in time series will be 
given in the next section and in section 3.2.

Example 1.3 We can illustrate the above approaches in the following way. Usu-
ally economic data grow exponentially. This means that for a variable X we have 
the growth equation Xt = (1 + gt) Xt−1 in the discrete case, or −= 1

tg
t tX X e  in the 

continuous case, where gt is a growth rate in between two successive periods 
or the rate of return depending on the nature of X. By logarithmic differencing 
we obtain ln Xt – ln Xt –1 = ln(1 + gt) ≈ gt in the discrete case or ln Xt – ln Xt−1 = gt 
in the continuous case. Specifically, let us consider a time series of price lev-

els { } =1

T
t t

P . By logarithmic differencing we receive the series of inflation rates 

πt = ln Pt – ln Pt−1.

The above mentioned differences were always just differences between two suc-
cessive periods. If the data exhibit a seasonal pattern, it is more fruitful to apply 



 21THE NATURE OF TIME SERIES

differences between the seasonal periods. For example, with quarterly data we 
can apply fourth seasonal logarithmic differencing to obtain ln Xt – ln Xt−4. Such 
a procedure removes the seasonal pattern from the data and also decreases 
the variance of the series (of course if the seasonal pattern really has a period 
of four quarters). We will deal more with seasonal patterns in the next section 
and in section 3.3.

1.5 TREND, SEASONAL, AND IRREGULAR PATTERNS

With some simplifying, a general time series can consist of three basic compo-
nents, the deterministic trend, the seasonal pattern, and the irregular pattern. 
Our task by estimation and forecasting is to decompose the series into these 
three components. A series can be written as:

 = + +t t t ty T S I , (1.1)

where the three components can be described in more detail as follows.

1. The deterministic trend Tt can be generally described as a trend polyno-

mial 
=

=∑ 0

n i
t ii

T a t . Usually we will deal only with linear or quadratic trends 

(n = 1 or 2). If the series grows exponentially, it is a good idea to take a natu-
ral logarithm in order to transform exponential growth into linear growth. 
How to estimate and remove the trend from a time series is described in 
section 3.2. Other than deterministic trends, section 3.2 deals also with so-
called stochastic trends. However, stochastic trends can be viewed rather as 
a part of the irregular pattern.

2. The seasonal pattern St can be described as St = c sin(t2π/d), where d is 
the period of the seasonal pattern. For example if we look at the monthly 
number of visitors to a sea resort, then the period of the seasonal pattern of 
such series would be very likely 12 months. Another way to describe sea-
sonal patterns is to incorporate them into the irregular pattern. The issue 
of seasonality will be treated again in section 3.3.

3. The irregular pattern It can be expressed by a general ARMA model, as de-
scribed in the following section. In fact, most of the following sections as 
well as most of univariate time series econometrics deals particularly with 
the estimation of irregular patterns.

Example 1.4 As an example of the above components we show the decomposi-
tion of a time series into trend, seasonal and irregular patterns on a hypotheti-
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cal time series in figure 1.2. The time series in the picture consists of the trend 
Tt = 2 + 0.3t, the seasonal pattern St = 4sin(t2π/6), and the irregular pattern 
It = 0.7It−1 + εt, where εt are normal i.i.d. with 0 mean and variance σ2 = 9.

Figure1.2: Decomposition of a time series into deterministic trend, seasonal and 
irregular patterns.

1.6 ARMA MODELS OF TIME SERIES

ARMA models are the most common processes used to estimate stationary ir-
regular or eventually also seasonal patterns in time series. The abbreviation 
ARMA stands for autoregressive moving average, which is a combination of au-
toregressive and moving average models. The individual models and their com-
bination are described in the following list.

1. Autoregressive process of the order p, AR(p), is described as

 ε−
=

= + +∑0
1

p

t i t i t
i

y a a y . (1.2)

2. Moving average process of the order q, MA(q), is described as

 β ε −
=

=∑
0

q

t i t i
i

y . (1.3)

Trend Seasonal

SeriesIrregular


